## A note on a conjecture of L. J. Mordell

HTML articles powered by AMS MathViewer

- by Michael A. Malcolm PDF
- Math. Comp.
**25**(1971), 375-377 Request permission

## Abstract:

A computer proof is described for a previously unsolved problem concerning the inequality $\sum \nolimits _{i = 1}^n {{x_i}/({x_{i + 1}} + {x_{i + 2}}) \geqq n/2}$.## References

- P. H. Diananda,
*On a cyclic sum*, Proc. Glasgow Math. Assoc.**6**(1963), 11–13 (1963). MR**150084** - D. Ž. Djoković,
*Sur une inégalité*, Proc. Glasgow Math. Assoc.**6**(1963), 1–10 (1963) (French). MR**150083**
J. Alan George, FMIN1- - Ramon E. Moore,
*Interval analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR**0231516** - L. J. Mordell,
*On the inequality $\sum ^{n}_{r=1} \,x_{r}/(x_{r+1}+x_{r+2})\geqq n/2$ and some others*, Abh. Math. Sem. Univ. Hamburg**22**(1958), 229–241. MR**96915**, DOI 10.1007/BF02941955 - L. J. Mordell,
*Note on the inequality $\sum ^{n}_{r=1}\,x_{r}/(x_{r+1}+x_{r+2})\geq n/2$*, J. London Math. Soc.**37**(1962), 176–178. MR**138580**, DOI 10.1112/jlms/s1-37.1.176 - Pedro Nowosad,
*Isoperimetric eigenvalue problems in algebras*, Comm. Pure Appl. Math.**21**(1968), 401–465. MR**238087**, DOI 10.1002/cpa.3160210502
R. A. Rankin, "An inequality," - H. S. Shapiro, Richard Bellman, D. J. Newman, W. E. Weissblum, H. R. Smith, and H. S. M. Coxeter,
*Advanced Problems and Solutions: Problems for Solution: 4603-4607*, Amer. Math. Monthly**61**(1954), no. 8, 571–572. MR**1528827**, DOI 10.2307/2307617 - A. Zulauf,
*On a conjecture of L. J. Mordell*, Abh. Math. Sem. Univ. Hamburg**22**(1958), 240–241. MR**124261**, DOI 10.2307/3610955

*Local Minimum of a Real Scalar Function of Several Variables Using a Gradient Search Method*, Computer Science Department Program Library, Stanford University, Stanford, Calif., 1968. M. A. Malcolm & J. Katzman, RAT-

*Range Arithmetic Translator*, 1969. (Unpublished.)

*Math. Gaz.*, v. 42, 1958, pp. 39-40.

## Additional Information

- © Copyright 1971 American Mathematical Society
- Journal: Math. Comp.
**25**(1971), 375-377 - MSC: Primary 10.05; Secondary 68.00
- DOI: https://doi.org/10.1090/S0025-5718-1971-0284395-8
- MathSciNet review: 0284395